

Open Data Management Solutions for Problem Solving Environments:
Application of Distributed Authoring and Versioning to the Extensible

Computational Chemistry Environment

Karen Schuchardt, James Myers, and Eric Stephan
Pacific Northwest Laboratory

Karen.Schuchardt@pnl.gov, Jim.Myers@pnl.gov, and Eric.Stephan@pnl.gov

Abstract
Next-generation problem solving environments (PSEs)
promise significant advances over those now available.
They will span scientific disciplines and incorporate
collaboration capabilities. They will host feature-
detection and other agents, allow data mining and
pedigree tracking, and provide access from a wide range
of devices. Fundamental changes in PSE architecture are
required to realize these and other PSE goals. This paper
focuses specifically on issues related to data management
and recommends an approach based on open, metadata-
driven repositories with loosely defined, dynamic
schemas. Benefits of this approach are discussed and the
redesign of the Extensible Computational Chemistry
Environment's (Ecce) data storage architecture to use
such a repository is described, based on the distributed
authoring and versioning (DAV) standard. The suitability
of DAV for scientific data, the mapping of the Ecce
schema to DAV, and promising initial results are
presented.

 Index Terms—metadata, problem solving
environments, scientific data management, self-describing
dynamic schemas, WebDAV protocol, XML.

1. Introduction

 Scientific problem solving environments are complex
computing systems that seek to integrate the activities
necessary to accomplish high-level domain tasks [1][2].
They may include components for managing scientific
workflow, tracking data pedigrees, transforming and
filtering data, analyzing and visualizing results,
automating feature extraction, and annotating records. As
described by Gallopoulos et al., they also “use the
language of the target class of problems, so users can run
them without specialized knowledge of the underlying
computer hardware or software” [1]. Thus, at the
cognitive level, a PSE encodes domain knowledge, and,
to varying degrees, enforces or guides users toward best
practices. This characteristic is a powerful benefit of
PSEs, particularly for novices or occasional users.

 Unfortunately, contemporary PSEs tend to embed
domain knowledge into the design of persistent data
objects and the data store itself, requiring early agreement
about best practices, as well as a complete domain
ontology. These undesirable impacts may result:

• As the scope of a PSE increases, the number of parties

that must agree upon best practices and ontology, and
the resultant data structures, become untenably large.

• As components are incorporated into a PSE,
negotiation is required between the component
developer and the PSE framework designers. Creating
a component that fits within a PSE framework often
makes the component unusable in other PSEs or as a
stand-alone application.

• As best practices evolve or PSEs are extended to
support users with different goals, the data structures
and control flows must change. All components must
be changed simultaneously and the existing data
structures migrated.

• As PSE usage expands, the need for federated access to
multiple data stores at multiple locations is necessary
to provide multi-scale and/or cross-disciplinary
capabilities. With current practices this is difficult and
costly because of incompatible access mechanisms and
non-integrable, non-discoverable schemas.

 These four problems reduce the ease of PSE evolution,
create undesirable coupling between components, and
introduce up-front delays in creating and extending PSEs.
Advances in data storage architectures will be required to
mitigate these problems and enable next-generation PSEs.
The work presented here is based on a concept for open,
metadata-driven repositories whose schema can be
dynamically extended and altered without requiring
changes to existing PSE components. This concept
differs in two respects from the use of metadata in digital
libraries and scientific archives. First, we use the
repository as the primary PSE persistence mechanism.
Second, it is expected that no individual component, data
store included, need understand or even be aware of the
entire schema. This significantly reduces the coupling

mailto:Karen.Schuchardt@pnl.gov
mailto:Jim.Myers@pnl.gov
mailto:Eric.Stephan@pnl.gov

between components and between the data store and
components, thus reducing the level of agreement
necessary to create and evolve the PSE. This paper
details our concept, presents results of an initial
implementation of such an architecture within an existing
PSE at the Pacific Northwest National Laboratory, and
discusses some motivating scenarios made possible by
this new design.

2. Background

 The Pacific Northwest National Laboratory (PNNL)
has several ongoing efforts in developing PSEs,
collaboratories, and large-scale data management
systems. These efforts focus in different scientific and
engineering domains and have developed systems tailored
for their respective communities with their differing
requirements for security, computation, and data scaling.
Unfortunately, the different design choices made with
respect to the data management components have so far
constrained the scope of applicability of otherwise generic
components and pose significant barriers to the
development of a single unifying architecture with best-
of-breed capabilities.

 In this paper, the context of PNNL’s Ecce is used to
explore these issues and to present an initial
implementation of an architecture that addresses them.
Ecce is one component of the Molecular Science Software
Suite (MS3) [3]. MS3 is an integrated suite of
comprehensive software that enables scientists to
understand complex chemical systems by coupling
advanced computational chemistry techniques with high-
performance, parallel computing systems. As shown in
Figure 1, MS3 consists of three components: NWChem
provides advanced computational chemistry techniques,
ParSoft provides efficient and portable libraries and tools
that enable NWChem to run on a wide variety of parallel
computing systems, and Ecce is a domain-encompassing
PSE composed of a suite of tools. Ecce assists chemists
with many tasks, including the management of projects
and calculations, construction of complex molecules and
basis sets, generation of input decks, distributed execution
of computational models, real-time monitoring, and post-
run analysis [4] [5]. Ecce and MS3 have been operational
since 1997 and won an R&D 100 award from R&D
Magazine in 1999.

 Ecce was designed nearly eight years ago around
object level integration. At the core of Ecce is an object-
oriented chemistry data model that supports management
and manipulation of computational data, experimental
data, and metadata. Ecce designers elected to apply
object database technology to the management of this
data. Until recently, persistent data and the model itself
were implemented using an object-oriented database

Figure 1. Molecular Science Software Suite
(MS3): Ecce, NWChem, and ParSoft

management system (OODBMS) [6] [7]. Persistent
object classes, representing molecules, basis sets, projects,
calculations, and jobs, provided the core for tool
development. These object classes also provided the
management of data, metadata, and complex relationships
between data objects. Use of object-oriented design and
the OODBMS allowed Ecce to provide a high degree of
interaction between components. At the time of its
development, the Ecce architecture represented an
innovative approach to managing the complex
computational chemistry research data [8].

 Despite its success, the Ecce design has significant
limitations when analyzed in Year 2001 terms. OODBM
systems have failed to mature and standardize as rapidly
as expected. As described by others [9], it is nearly
impossible to gain complete agreement between vendors
on anything concerning object database systems. Other
significant problems include proprietary binary formats,
tight coupling between the programming language and the
OODB, lack of application development tools, and a
schema evolution process made painful by outdated
schema/application compilation cycles. Object databases
have design principles opposite from the web-based thin-
client/fat-server architecture and cannot effectively
leverage the plethora of new technologies being
developed around this architecture.

 Our vision for next-generation PSEs is one where
independently designed and developed components are
rapidly combined to deliver more powerful solutions and
reach larger communities of researchers while sharing
development costs among the interested parties. For
example, Ecce is now adding support for the field of
molecular dynamics. This change entails enhancements
and additions to the object model and schema that,

without changes to the underlying data management
system, would have amplified the issues previously
mentioned.

 Similar problems would be expected during the
inclusion of third-party tools to compare theoretical and
experimental results, to model chemical kinetics, or to add
functionality related to biology or materials science.
Within PNNL, two existing projects are targeted for
integration with Ecce in the near term: a large-scale
hierarchical data archive and an Electronic Laboratory
Notebook system. These systems, which were developed
in different languages with different object schemas and
data management systems, are essentially third-party
applications. Although a useful level of integration has
been accomplished with the Electronic Laboratory
Notebook, the use of independent data stores makes the
integration brittle with respect to the evolution of either
object model. Direct integration with either of these
systems is undesirable due to the resulting tight coupling
and impact on deployability and maintainability. Thus, an
alternate strategy is required. The work to lower
development costs and reduce deployment barriers for
PSEs reported here is therefore motivated by practical as
well as theoretical considerations. We sought to solve
several pressing deployability and integration issues in a
manner that would be widely applicable to PSEs in
general.

3. Approach

 A key observation leading toward an open PSE data
management architecture was the realization that PSE
components, although they manipulate common data
artifacts, often interact through data flow, generating
additional attributes or creating new objects related to
data generated by another component. This
observation—coupled with the issues previously
discussed—leads to several design criteria:

• Direct access to raw data. Access to data through a

common object model, although useful in maintaining
consistency, limits the representational power of
applications added to the system. Providing direct
access to the underlying persistent attributes of the data
removes this constraint.

• Self-describing data and data relationships. Without an
object model common across all applications, another
mechanism is needed to allow the discovery of data
semantics. Using a self-describing data format (that is,
a format that provides metadata about the data),
applications can use existing data in new ways and
generate new data attributes and relations, as needed.
Significantly, applications can also ignore existing

relationships that have no meaning for them, or can
translate the relationship semantics into their own
domain ontology.

• Schema-independent data stores. With self-describing
data, the data storage system does not need to have
deep knowledge of the application objects. By
removing knowledge of the schema from the storage
system, it becomes possible to support multiple
independent or loosely coupled schemas within a single
data store where these schemas can evolve without
changes to the data store itself.

• Separation of application-level object from the data
storage mechanism via a standard protocol(s). Using a
standard protocol for describing data management
operations helps to maintain the schema independence
previously described. Additionally, a standard protocol
allows the selection of the implementation of the data
store to be independent of the application technologies.
Thus, the data store can be selected based on the
performance, cost, and scaling requirements for a given
PSE deployment and on the expected use patterns.
Similarly, specifying a protocol instead of a
programming interface enables client-side components
to be independent of language and platform.

 These four criteria lead to a very flexible, yet powerful,
architecture. Applications designed this way can be
developed independently, yet integrated deeply based on a
partial, post-development mapping between their
respective schema descriptions. They can also be
deployed to a much broader range of users. Several Ecce-
related scenarios, enabled by this design, will be
described.

3.1 Technology Selection

 The architecture discussed above could be
implemented using a variety of technologies. Data
objects that support arbitrary metadata can be developed
using the Common Object Request Broker Architecture
(CORBA) [10]. Similarly, Version 3 of the Lightweight
Directory Access Protocol (LDAP) allows extension of
existing entries with new metadata through the use of the
extensibleObject class. However, the combination of the
Web’s Hyper Text Transfer Protocol (HTTP) [11], the
Extensible Markup Language (XML) [12], and the
Distributed Authoring and Versioning (DAV) protocol,
also known as WebDAV [13], provides the closest
conceptual mapping to our design goals. DAV, an
extension to http 1.1, was originally designed to support
collaborative authoring [14]. It provides structured XML-
encoded requests for manipulating MIME-typed
“documents” (get, put, move, copy, lock) and associated
metadata (propfind, proppatch). Each piece of metadata
is an XML encoded key-value pair in which the value
may be simple text or contain complex data in, for

example the form of an XML object. DAV “documents”
are not restricted to text-oriented formats and are more
analogous to files or binary large objects. New properties
can be added at any time, and applications can manipulate
arbitrary subsets of properties. For example, an
application can request only the values of properties it
understands from the server. Thus, the DAV protocol,
with its constructs to logically organize opaque, typed
data and to document that data with arbitrary metadata,
maps directly into the scientific data management domain.

 DAV currently supports only a simple, unordered
container/contains relationship, but the wide range of data
relationships used in PSEs (for example, temporal,
derivative, historical, and sequence, as well as the “is-a”
and “has-a” object modeling dependencies) can be
encoded using DAV’s XML metadata properties.
Extensions to DAV, such as DAV Searching and
Locating (DASL), Advanced Collections, and Versioning
that are currently under development promise additional
PSE-relevant capabilities [15], [16], [17]. XML provides
rich capabilities for schema description (XML Schema)
and translation (XSLT), avoiding name collisions (XML
Namespaces) and representing relationships (XLink).
The emergence of scientific domain languages defined in
XML and generic XML parsing tools provide additional
leverage (for example, the Chemical Markup Language
(CML) [18], MathML [19], the Extensible Scientific
Interchange Language (XSIL) [20]). Finally, the maturity
of http-related mechanisms for supporting multiple
security options and providing scalable performance and
fault tolerance provides a wide range of options for
deployment.

3.2 Implementation

3.2.1 DAV Server. DAV is quickly gaining popularity
in the Web industry. Before the end of 1999, the Apache
Software Foundation, IBM, and Microsoft had already
deployed DAV servers as extensions to Web servers.
Client-side support is offered by the Microsoft Office
2000 suite and Java, C++, and Python tool kits. Database
vendors are also moving to support DAV. More recently,
Web development products have incorporated DAV
capabilities including Macromedia Dreamweaver, Adobe
Photoshop 6, GoLive 5, and several others. This broad
acceptance of DAV is rapidly expanding the server-side
options available and the emergence of optimized, high-
performance implementations can be expected. In
choosing a DAV server implementation for development
use in this project, we emphasized cost, robustness, and
protocol conformance over performance. The
OpenSource mod_dav extension for the Apache Web
Server fit these criteria. The mod_dav implementation
uses file system files and directories to provide
persistence for data objects and collections, respectively.

Metadata properties are stored in a hash table within a
database manager (DBM) formatted file, one file per
document or collection. Either Simple DBM (SDBM) or
Gnu DBM (GDBM) may be used. SDBM imposes a 1-
kilobyte (KB) size limit on individual metadata values,
has a default initial size of 8 KB and requires fewer steps
during the server build process. GDBM imposes no size
restrictions, has higher performance, requires a few more
steps during the server build process, and has a default
initial database size of 25 KB [21]. With both
implementations, manual garbage collection utilities must
be used to reclaim space associated with changed or
deleted metadata properties.

 Under conditions expected to be representative of
typical PSE requirements, the Apache Server and
mod_dav module were tested for DAV protocol
compliance, robustness, and performance. Several server
configurations were used to assess the effects of key
parameters, such as network connection, memory, and
operating system features. All servers were built using
Apache 1.3.11, mod_dav 1.1, and GDBM 1.8. Each was
configured to use basic authentication, to accept persistent
connections with limits of 100 connections per minute, 15
seconds between requests, and a minimum of 5 daemons.
The test client machine was a 450-MHz Sun Ultra 60
with 512 MB RAM. Our client-side software consisted of
internally developed C++ classes with 1500-byte packets
to mirror our typical TCP packet sizes and the xerces
1.3 DOM parser for processing results.

 As of this writing, no public protocol compliance test
suites exist for DAV. Test programs were developed to
test each DAV method (put, proppatch, propfind…). In
addition, both the Microsoft Office 2000 tools and a Java
DAV Explorer client [22] were used as interactive client-
side applications test tools. As a result of this testing and
the robustness and performance tests described next, we
did not find any major DAV protocol compliance issues
except for the few noted on the DAV development Web
site [23]. These issues did not present any significant
problems for the anticipated use.

 Tests were performed to verify upper size limits and
ensure the server behaved properly when encountering
large metadata and documents. With mod_dav and
GDBM, properties as large as 100 MB and documents as
large as 200 MB were created repeatedly without
problems. Document size restrictions are those imposed
by the underlying file system. Although these tests
involve property and data sizes much larger than those
expected in DAV’s prototypical use in document
management, no problems were encountered, convincing
us that mod_dav would be suitable for our application.
The maximum size of metadata properties is configurable
and, as an initial (post-testing) value, we set a limit of

10 MB per property. It should be noted that storing an
XML-based metadata property using mod_dav currently
requires double the memory of the property: one copy
with the XML request body and another copy that is the
key/value pair extracted from the body. Further, effective
denial-of-service attacks can be created by repeatedly
sending large XML request bodies. Thus, in a production
system, the maximum should be set as low as possible for
a given application.

 When initially considering DAV as the basis for a PSE
data management architecture, it was unclear whether
overall performance of a request-response protocol such
as http would be comparable to alternative strategies such
as an OODBMS with a cache-forward architecture as
used by Ecce. To assess the feasibility, tests that mimic
typical PSE access patterns were developed. PSEs
typically include capabilities to traverse through data sets
and examine properties, query and replace properties, add
new properties as tasks are performed, copy entire task
sequences, and delete task sequences (Table 1).
Additionally, to mimic storing and retrieving
computational input and output files, the performance of
get and put were tested (Table 2). All tests were
performed during off-hours to minimize the effect of
network traffic.

 Table 1 includes both elapsed and CPU time to help
determine whether performance costs were occurring on
the client or the server side. Roughly, the CPU time
represents client-side processing time while server
processing time can be determined as elapsed time minus
CPU time with some time allocated to moving the
requests and responses across the network. Given the

relatively small sizes of the metadata and the 150-Mbit/s
network connection, network transport has little impact on
these tests, thus providing a reasonable assessment of
server performance. For these tests, we created
50 documents, each with 50 properties of 1 KB in size
and performed operations to query for selected data,
traverse the data, copy it, and remove it. Server responses
were parsed and moved into generic hierarchical object
representations. As shown, metadata operations on
individual objects are quite fast. However metadata
operations on a large number of objects added up to
several seconds. For these operations, the bulk of the
time was spent on client-side processing. This percentage
can be attributed to the current use of a parser based on
the Document Object Model (DOM) [24] to parse the
response and create custom data structures. Significant
improvements can be expected by converting to a Simple
API for XML (SAX) [25]-style parser. (SAX parsers do
not build an in-memory representation of the entire XML
document as DOM parsers do, eliminating significant
overhead.) In addition, alternative server-side
implementations that do not operate on many small
metadata databases as mod_dav does are expected to
provide significant server-side performance
improvements. In this particular test case, 50 separate
database files were opened, queried, and closed. With
data distributed across many documents and collections,
copy and remove operations can be costly on the server
side, but preliminary testing with journaling file systems
show that significant performance increases can be
expected for these operations as well.

 Table 2 shows that our implementation of http/put
performed comparably with a standard binary-mode ftp

Table 1. Performance results of typical PSE operations – elapsed and CPU time

Get all
metadata.
Depth=0(a)

Get selected
metadata
Depth=0(b)

Get selected metadata
for 50 objects

depth=1(c)

Get metadata
for

50 objects(d)

Copy hierarchy
with 50 objects

totaling 4.5MB(e)

Remove hierarchy with
50 objects totaling

4.5MB(f)

elapsed(g)
 cpu

0.068 s
0.04 s

0.055 s
0.03 s

2.732 s
2.04 s

3.032 s
1.93 s

3.482 s
0.14 s

1.782 s
0.01 s

(a) Get all metadata on single document including system properties and 50 test properties each 1 KB.
(b) Query for 5 of the properties on a single document.
(c) Use depth=1 capability to query for metadata for 5 of 50 properties on 50 objects within a collection.
(d) Query for 5 of 50 properties on 50 objects - one at a time.
(e) Copy collection of 50 documents each containing 50 1 KB application properties.
(f) Remove collection created by copy step.
(g) Sun Enterprise 450 running Solaris 2.6 with 512 MB memory and 150-Mbit/s network connection. This machine served as Ecce’s OODB server.

Table 2. Performance of binary ftp vs http/put

ftp 20 MB
mem to mem

using /tmp

ftp 20 MB
Local file to

local file

ftp 200 MB
Local file to

local file

Put 20 MB
Local file to

local file

Put 200 MB
Local file to

local file
Enterprise 450(a) 1.5 s 3.3 s 30 s 3.0 s 30 s
(a) Sun Enterprise 450 running Solaris 2.6 with 512 MB memory and 150-Mbit/s network connection. This machine served as Ecce’s

OODB server.

client. It also demonstrates that network bandwidth is the
primary driver for moving large amounts of data: our
client and server did not introduce bottlenecks. As of this
writing, no performance tests have been run when using
alternative authentication mechanisms, such as public key
certificates, and no tests of scaling through the use of
multi-processor, multi-server load-balancing systems
have been done. Because these issues are related to the
Apache server, rather than the mod_dav module, the
performance hit for secure communications and overall
server scalability is expected to be similar to those
reported for generic Web applications.

 The mod_dav/GDBM/Apache server remained stable
during approximately 6 months of testing using all of the
scenarios described above. During this time, no loss of
persistent data or any data transmission loss was
experienced. Even without performance enhancements
such as pipelining and event-based XML parsing, the
performance, compatibility, and reliability tests provided
confidence that a reliable, deployable system could be
built with the current mod_dav implementation.

3.2.2 Data Access Architecture. Figure 2 portrays a
high-level view of the Ecce data architecture. As shown,
although the system uses the Apache/mod_dav server, the
system can take advantage of any service that implements
the DAV protocol. On the client side is a multi-layered
architecture designed to accomplish several objectives:
isolate data access to support plug-in protocol migration
and enhancements in the future, encapsulate object access
behind a factory/object layer for easy migration of
existing object-based applications, and provide a generic
data and metadata layer for flexible access to raw data for
future development work. Existing Ecce applications can
continue to work in terms of its rich set of C++ classes.
Factory modules in the object layer encapsulate access to
persistent data using implementations of the Data Storage
Interface, which maps requests for manipulating data and

Figure 2. Data access architecture overview

metadata into protocol-specific operations. While DAV is
the only protocol currently implemented, a separate data
storage interface will reduce the changes required to
provide native-protocol access to data grids or to
incorporate high-performance extensions to DAV - for
example, a GridDAV analogous to GridFTP [26].

 The initial DAV client implementation, based on C++
http classes developed at PNNL and the Apache xerces
1.3 XML DOM parser, is blocking and supports persistent
connections, but not pipelining. Further optimizations of
this implementation, using a SAX parser for example, as
well as the extension of the architecture to include a
client-side cache, are anticipated. As previously noted,
the data store is decoupled from Ecce and its only
requirement is DAV compliance.

3.2.3 Ecce Schema Mapping. The replacement of the
Ecce OODBMS data store with the new architecture has
required examination of the use of persistent classes in
Ecce and decisions about how to map their structure,
content, and relationships into the DAV constructs of
collections, documents, and metadata. Ecce had 70
classes “marked” for persistent storage, including
relatively simple types, such as dates, and complex class
hierarchies that include abstract classes for modeling
experiments and calculations, output data properties,
molecules, basis sets, and compute jobs. For brevity, the
discussion of this mapping process is limited to a subset
of the data model – the calculation model. A simplified
version of the class model in Unified Modeling Language
(UML) notation [27] is shown in Figure 3.

 The inheritance in this model provides semantics
through virtual methods, as well as through data
derivation. Briefly, the model shows a study subject
(Molecule) on which a task of an Experiment is
performed, the results of which are a series of
n-dimensional output Properties. The focus of the model
is on simulated experiments or calculations. All the

Figure 3. Simplified calculation object model

information needed to reproduce the calculation and
provide historical context or post-analysis capabilities is
captured. The mapping of the model to DAV can be
somewhat simplified because the DAV structure does not
need to explicitly capture the full inheritance semantics.
These semantics can be applied in the object factory layer
for applications in which they are important. For
example, to ease the migration of existing Ecce
applications that work directly with objects in Figure 3,
the object/factory layer of Figure 2 provides the as was
previously done through the OODBMS.

 Figure 4 depicts how the model was mapped to DAV
constructs. In general, objects recognizable by domain
scientists were mapped to separate DAV documents. This
strategy allows the lowest granularity of access to raw
data, minimizing overhead for tools or agents that only
care about certain subsets of data and reducing coupling
at the data level. It also allows metadata attachment at the
lowest granularity. Alternative strategies exist, but we
believe they have significant drawbacks with respect to
our objectives. For example, because DAV supports
arbitrary XML-encoded metadata values, we could have
chosen to include related objects within a single
document. However, objects mapped as properties cannot
themselves have DAV-accessible metadata properties.
Objects mapped as properties also become accessible only
through their relationship to the document’s main object,
severely limiting their ability to participate in multiple
relationships and reducing their visibility to other
applications.

 In the initial implementation, hierarchical relationships
were mapped into the DAV container/contains
relationship provided by collections. Thus, the list of
tasks in a calculation is located through the collection
mechanism. This collection-based structuring provides
convenience when viewing the data store through
standard DAV browsers, but does bend our rule about
schema independence. In future implementations, as
shown in italics in Figure 4, we expect to implement
relationships through properties, making the meaning of
the relationship available to other programs and allowing
the physical layout of objects in DAV to be adjusted
dynamically and independent of the metadata. For
example, an application or a DAV implementation might
elect to store large documents on an archive system, or
perhaps store all documents of a given type, such as 3D
molecular structures, in a single hierarchy for easier
algorithmic processing. Because the document will have
self-describing structure, the DAV structure can be
reorganized without breaking existing applications, as
long as applications interpret the structure dynamically
through the metadata. This “virtual document” approach
increases the granularity of access and assures that all
objects are independently accessible and can have their
own metadata properties. It also enables the dynamic
creation of relationships discovered and defined by third-
party agents.

 The data members of individual Ecce objects shown in
Figure 3 were mapped to a combination of DAV
document data and DAV document metadata properties.

Figure 4. Calculation model mapped to DAV constructs. Scrolls represent metadata for
documents/collections.

Mapping decisions were based on assumptions about
other applications that might want to discover, annotate,
and manipulate the individual data members. Although
these mapping decisions were somewhat arbitrary, the
tendency was to decompose Ecce objects as much as
possible to increase flexibility, stopping at the point
where community standard data structures exist. For
example, Ecce’s Molecule object was mapped to a Protein
Data Bank (PDB) [28], simple XYZ, or custom encoded
molecular geometry with metadata properties encoding
the format of the raw data, empirical formula, symmetry
group, and charge state. Thus, applications could search
the data store for DAV documents matching the formula
metadata and render a 3D display of the molecule without
understanding the rest of the Ecce schema. Where
standards do not currently exist, plain text or XML
markup (where appropriate) is applied to the data, as is
done for the Molecular Basisset document.

 For metadata properties, a single “ecce” namespace
was defined. As conventions mature and usage becomes
widespread, the project will migrate to community
standard conventions (for example, CML and naming
standards for computational science developed within the
Global GridForum [29]).

3.2.4 Data Migration. Ecce has been operational for a
number of years, and existing OODB data sets must be
converted to the new storage system. We have conducted
preliminary conversions of two of our larger databases,
which contain a total of 259 calculations represented by
about 420,000 objects with a combined size (excluding
raw data files) of 35 MB on our OODB server. We found
that the disk requirements increased by about 10% when
using mod_dav with SDBM and 25% when using GDBM.
The bulk of the increase was due to mod_dav: each
document or collection may have an associated database.

With default sizes of 8 KB and 25 KB for SDBM and
GDBM respectively, there is significant unused but
allocated space. Some of the difference in size can also
be attributed to the fact that binary formatted objects such
as doubles are typically more compact than textual/XML
representations of the same data. Finally, these particular
data sets were on very small chemical systems with
correspondingly small output dataset sizes. For studies on
larger systems, the metadata databases will be a much
smaller percentage of the total space used. While these
differences can be explained, we were still somewhat
surprised because our OODBMS also creates its own
overhead, using hidden segments to optimize
performance. Alternative back-end DAV solutions could
be selected to provide more efficient storage, though at
current storage costs this is not a pressing concern for
Ecce.

4. Discussion

 A public beta release of Ecce with the new storage
architecture was released the first quarter of 2001, and
design work for adding DAV capabilities to PNNL’s
electronic notebook have begun. The production release
of Ecce (2.0) is scheduled for July 2001. As described in
following paragraphs, we believe that porting Ecce to the
new architecture meets our objectives: it satisfies our
goal of creating a lightweight data storage architecture
with dynamically evolving schema and loose coupling at
the data access level. It will provide a useful platform for
further research and development efforts.

 All of the Ecce applications have been converted to the
new storage architecture, enabling further performance
assessments. Table 3 summarizes size, application startup
time, and the operation of each tool loading its set of data
for a typical calculation. The selected calculation is a
Uranium Oxide surrounded by 15 water molecules

Table 3. Ecce 1.5 vs. Ecce 2.0 beta Performance Summary for Ecce Tools (The client is a Sun Ultra 60.
Times are elapsed time.)

 Builder BasisTool Calc Editor Calc Viewer Calc Manager Job Launcher

Ecce 1.5
Size (res) 30 MB 20 MB 30 MB 30 MB 20 MB 19 M

Cold Start 1.6 s 5.0 s 2.4 s 1.5 s 2.8 s 0.9 s
Warm Start 1.2 s 4.6 s 2.2 s 1.1 s 2.7 s 0.8 s

UO2-
15H2O(a) 0.5 s 2.14 s 7.6 s 4.4 s NA 0.9 5 s
Ecce 2.0

Size (res) 25 MB 14 MB 21 MB 25 MB 13 MB 12 MB
Start 1.1 s 1.0 s 1.0 s 0.9 s 2.0 s 0.42 s

UO2-15H2O 0.1 s 0.2 s 0.9 s 2.2 s NA 0.48 s
(a) This is an example chemical system consisting of a molecule of Uranium Oxide surrounded by 15 water

molecules, typical in size of those studied using ECCE.

(UO2-15H2O) for a total of 50 atoms and individual
output properties up to 1.8 MB in size. Although
enhancing performance was not a primary goal of the
project, it was our goal to avoid a significant performance
decrease that would compromise usability. As Table 3
shows, the overall performance actually improved–in
some cases significantly. While this set of tests is small,
we have qualitatively found that applications perform as
well or better than their OODBMS-based counterparts
overall. The typical workflow processes that a user
performs within Ecce did not derive significant benefit
from the cache-forward architecture of our OODB. If we
do encounter areas of performance concern where a cache
makes sense, one could easily be added to the layered
client architecture of Figure 2.

 Several additional possible optimizations have not been
pursued, such as taking advantage of http 1.1 pipelining,
making use of multiple simultaneous connections, or
bundling requests where class usage patterns involve
setting many data members (mapped to metadata on the
DAV object) in rapid succession. Note that the test
results reported here do not reflect the use of http 1.1
persistent connections. In the current environment,
reconnecting each time was significantly faster than
making use of persistent connections, an anomaly still
under investigation. Overall, these directions, combined
with anticipated enhancements in DAV server
performance levels, provide a variety of options for
substantially improving performance in subsequent Ecce
releases.

 In terms of deployability, the DAV-enabled Ecce
represents a vast improvement. The client and server
licensing costs are now zero, assuming use of a no-cost
implementation of DAV, such as Apache and mod_dav.
Because DAV allows manipulation of individual objects
and properties, the memory and processing requirements
are much reduced in comparison to the OODBMS
solution. Configuring and running Apache/mod_dav is
significantly simpler than installing an OODBMS. Also,
because Ecce can share a DAV server, it is possible to
have no server setup at all. This raises the possibility of
small academic groups using a departmental DAV server
as their data store, or outsourcing the server completely.
Although commercial DAV services are aimed more at
simple document and file sharing, we have already
demonstrated running Ecce against a public DAV server
hosted by Xythos [30]. That is, since Xythos’ Web File
System (WFS) 3.0 product is DAV-compliant, we were
able to have the Ecce client use it as a database by simply
configuring the client with the URL of a public WFS
server maintained by Xythos at their site. For larger
installations, the possibility for using multiple servers
with standard Web load-balancing and fail-over services
(a path not yet explored in detail) promises reliability and

scalability. The level of security can also be tailored to
group needs; because DAV inherits the HTTP
authentication, authorization, and encryption mechanisms,
a variety of options exist. The standard HTTP libraries
required to support the various Web security protocols are
not yet included in Ecce. When this is done, selecting
encryption of communications with the data store
becomes a simple matter of Web server configuration.
This broad flexibility makes it possible to tailor Ecce to
the performance, storage, and management needs of
individual groups.

 As a testbed, Ecce now provides an unprecedented
level of access to its data store, leading to a variety of
possibilities. As DAV is an extension of HTTP, Ecce
users can run standard Web browsers to “surf” the Ecce
database and to view Ecce-generated images, subject to
the same access controls applied when accessing the data
through Ecce. Existing applets and applications can
retrieve and render molecular structures and other data
given the HTTP URL for that item within the Ecce data
store. Relatively simple cgi scripts or servlets can quickly
be developed to provide thin-client access to many of the
features currently provided by heavy UNIX/Motif clients.
DAV-enabled browsers would provide the additional
benefit of allowing users to view all of the data members
mapped as DAV properties as they navigate through the
data objects.

 Developers maintaining and enhancing Ecce have also
benefited from the new data architecture. Web and DAV
browsers become debugging tools. In-house developers
are no longer burdened with a combined
application/schema compilation cycle. Third-party
developers choose whether to use the Ecce object schema
or to develop a mapping of their own objects into DAV
using generic XML parsing tools. The latter option will
allow electronic notebooks to directly reference and
display Ecce data. In addition, the notebooks will have
the capability to add additional metadata, such as digital
signatures and annotation relationships, to the data
without affecting the operation of Ecce. This open data
architecture also makes possible feature analysis
applications or agents that can independently discover
objects in the data store (3D structures, for example),
apply feature analysis algorithms, and attach their
discoveries to the objects as new properties. For example,
an agent could use the molecular geometry, vibrational
frequencies, electron distribution and other properties
calculated via Ecce to determine thermodynamic
properties of the molecule which could then be appended
as new DAV properties of the molecule object. Although
Ecce currently cannot make use of this additional data, we
envision a modification that would allow Ecce, or any
PSE, to present such metadata to the user as part of a
query interface. This generic mechanism would make

metadata created by new applications immediately
available for use in categorizing and selecting data sets
within an existing PSE.

 These lightweight integration scenarios can provide
real benefits to users without system-wide agreement on a
common schema. Moreover, the capability to move
incrementally and partially towards a common schema in
this open architecture is expected to actually promote
more semantic integration. Since DAV supports “live”
properties that are calculated dynamically, it is possible to
imagine generating metadata on-the-fly to support new
applications. Using XML stylesheet language translations
(XSLT), a DAV server could be extended to translate
properties for applications built using different schema.
Thus, developers can encode the mapping between their
object schemas external to their applications in a
dynamically evolvable form. Although this paper has
assumed that such mappings will involve data members
encoded in metadata, we are investigating similar
mechanisms that would allow XML description of the
mapping between the (potentially) binary DAV objects.
Ultimately, it may be possible to achieve any desired level
of data interoperability between applications through the
installation of XML mapping descriptions in a common
DAV-based data store.

5. Conclusions

 Full realization of this vision will require significant
additional work. As noted earlier, many of the advanced
features of DAV, including DAV Searching and Locating
(DASL) and DAV Advanced Collections, are still being
standardized, while features such as transaction support
are not yet addressed. Development tools that simplify
extracting metadata from binary data files are also
needed, as are mechanisms to dynamically translate
between metadata definitions. However, the growing
acceptance of XML and DAV should quickly lead to a
range of choices in these areas. Once developed, these
tools will provide a rich, domain-independent foundation
for developing flexible, scalable, evolvable PSEs.

 The release of a DAV-based version of Ecce represents
a significant advance for current Ecce users and a step
toward a more flexible PSE architecture. The
development of a new Ecce architecture to use open,
metadata-driven repositories based on DAV has provided
immediate benefits in terms of flexibility, reduced
deployment and maintenance costs, additional security
options, and improved data accessibility. Such schema-
neutral repositories will be a critical component of next-
generation PSE architectures that will enable dynamic
collaboration across scientific disciplines and enhance
information discovery. Using Ecce as a test bed, the plan
is to continue to expand and explore the possibilities

inherent in open data architectures for integrating feature
detection, data mining, and other agents, along with
notebooks and domain applications. This approach is
expected to significantly reduce the barriers to PSE
development and evolution while enhancing capabilities
and helping make the PSE a basic part of the scientific
infrastructure.

Acknowledgment
The Pacific Northwest National Laboratory is operated by
Battelle for the U.S. Department of Energy. This work
was supported in part by the U.S. Department of Energy
under contract DE-AC06-76RLO 1830.

References
[1] S. Gallopoulos, E. Houstis, and J. R. Rice, 1994,

“Problem-solving environments for computational
Science,” pp. 11-23, IEEE Computational Science and
Engineering, Summer.

[2] J. R. Rice and R. F. Boisvert, 1996, “From scientific
software libraries to problem-solving environments,”
pp. 44-53, IEEE Computational Science & Engineering,
Fall.

[3] Molecular Science Software Suite.
http://www.emsl.pnl.gov:2080/mscf/about/descr_ms3.html

[4] D. A. Dixon, T. H. Dunning, M. Dupuis, D. F. Feller,
D. K. Gracio, R. J. Harrison, J. A. Nichols, and K. L.
Schuchardt, 1999, “Computational Chemistry in the
Environmental Molecular Sciences Laboratory,” Plenum
Publications, Book Chapter in “High Performance
Computing."

[5] D. R. Jones, T. L. Keller, K. L. Schuchardt, H. L. Taylor,
and D. K. Gracio, “Extensible Computational Chemistry
Environment Data Centered Framework for Scientific
Research,” 1999, Domain-Specific Application
Frameworks: Manufacturing, Networking, Distributed
Systems, and Software Development, Chapter 24,
Vol. Three, No. 0-471-332801.

[6] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich,
D. Maier, and S. Zdonik, “The object-oriented database
system manifesto.” In Proceedings of the First
International Conference on Deductive and Object-
Oriented Databases, pp. 223-40, Kyoto, Japan, December
1989.

[7] The Committee For Advanced DBMS Function, Third
generation database system manifesto, Computer Standards
and Interfaces 13 (1991), pages 41-54. North Holland.
Also appears in SIGMOD Record 19:3 Sept, 1990.

[8] External Review Committee Report on the Extensible
Computational Chemistry Environment, January 1996.

[9] M. J. Carey and David J. DeWitt, “Of objects and
databases: A decade of turmoil.” Proceedings of the 22nd
VLDB Conference, Mumbai (Bombay), India, 1996.

[10] PRE - A FRAMEWORK for ENTERPRISE
INTEGRATION. R. A. Whiteside, E. J. Friedman-Hill,
and R. J. Detry, http://daytona.ca.sandia.gov/pre/s-
docs/Information/HICCS.html

[11] RFC 2616 Hypertext Transfer Protocol -- HTTP/1.1,
http://andew2.andew.cmu.edu/rfc/rfc2616.html

[12] XML Specification, http://www.w3.org/TR/REC-xml

http://www.emsl.pnl.gov:2080/mscf/about/descr_ms3.html
http://daytona.ca.sandia.gov/pre/s-docs/Information/HICCS.html
http://daytona.ca.sandia.gov/pre/s-docs/Information/HICCS.html
http://andew2.andew.cmu.edu/rfc/rfc2616.html
http://www.w3.org/TR/REC-xml

[13] RFC 2518 HTTP Extensions for Distributed Authoring –
WEBDAV,
http://andrew2.andrew.cmu.edu/rfc/rfc2518.html

[14] R. T. Fielding, E. J. Whitehead, Jr., K. M. Anderson, G. A.
Bolcer, P. Oreizy, and R. N. Taylor, “Web-based
development of complex information products,
communications of the ACM,” August 1998 (Vol. 41,
No. 8), pp. 84-92.

[15] DAV Searching & Locating – DASL,
http://www.webdav.org/dasl/protocol/draft-dasl-protocol-
00.html

[16] WebDAV Ordered Collections Protocol,
http://www.ics.uci.edu/pub/ ietf/webdav/collection/draft-
ietf-webdav-ordering-protocol-02.txt

[17] Goals for Web Versioning,
http://www.webdav.org/deltav/goals/draft-ietf-webdav-
version-goals-01.txt

[18] P. M.-Rust, H. S. Rzepa, M. Write, and S. Zara, 2000, “A
universal approach to web-based chemistry using XML
and CML,” Chem Commun, pp. 1471-1472.

[19] Math Markup Language, http://www.w3.org/TR/REC-
MathML/

[20] Extensible Scientific Interchange Language,
http://www.cacr.Caltech.edu/SDA/xsil/

[21] DBM Comparisons, http://www.rz.uni-
hohenheim.de/anw/prg/perl/
nmanual/lib/AnyDBM_File.html

[22] DAV Explorer, http://www.ics.uci.edu/~webdav/
[23] WebDAV mod_dav, http://www.webdav.org/mod_dav/
[24] Document Object Model (DOM) Level 2 Core

Specification, http://www.w3.org/TR/DOM-Level-2-Core/
[25] Simple API for XML, http://www.megginson.com/SAX.
[26] GridFTP: Protocol Extensions to FTP for the Grid. W.

Allcock, J. Bester, J. Breshnahan, A. Chervenak, L.
Liming, and S. Tuecke. Internet Draft. March 2001.
http://www.gridforum.org.

[27] Unified Modeling Language, http://www.omg.org/uml
[28] Protein Data Bank Format,

http://www.rcsb.org/pdb/docs/format/
pdbguide2.2/guide2.2_frame.html

[29] Global GridForum, http://www.gridforum.org
[30] Xythos, http://www.xythos.com/

http://andrew2.andrew.cmu.edu/rfc/rfc2518.html
http://www.webdav.org/dasl/protocol/draft-dasl-protocol-00.html
http://www.webdav.org/dasl/protocol/draft-dasl-protocol-00.html
http://www.ics.uci.edu/pub/ ietf/webdav/collection/draft-ietf-webdav-ordering-protocol-02.txt
http://www.ics.uci.edu/pub/ ietf/webdav/collection/draft-ietf-webdav-ordering-protocol-02.txt
http://www.webdav.org/deltav/goals/draft-ietf-webdav-version-goals-01.txt
http://www.webdav.org/deltav/goals/draft-ietf-webdav-version-goals-01.txt
http://www.cacr.caltech.edu/SDA/xsil/
http://www.rz.uni-hohenheim.de/anw/prg/perl/ nmanual/lib/AnyDBM_File.html
http://www.rz.uni-hohenheim.de/anw/prg/perl/ nmanual/lib/AnyDBM_File.html
http://www.rz.uni-hohenheim.de/anw/prg/perl/ nmanual/lib/AnyDBM_File.html
http://www.ics.uci.edu/~webdav/
http://www.webdav.org/mod_dav/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.megginson.com/SAX
http://www.gridforum.org/
http://www.omg.org/uml
http://www.rcsb.org/pdb/docs/format/ pdbguide2.2/guide2.2_frame.html
http://www.rcsb.org/pdb/docs/format/ pdbguide2.2/guide2.2_frame.html
http://www.gridforum.org/
http://www.xythos.com/

	Ecce 1.5
	Ecce 2.0

